

Evaluating Lightweight and Deep CNN

Architectures for Traffic Sign Recognition

Yoel Augustan

Computer Science Department

School of Computer Science

Bina Nusantara University

Jakarta, Indonesia 14240

yoel.augustan@binus.ac.id

Clariant Benedictus Tan

Computer Science Department

School of Computer Science

Bina Nusantara University

Jakarta, Indonesia 11830

clariant.tan@binus.ac.id

Ivan Sebastian Edbert

Computer Science Department

School of Computer Science

Bina Nusantara University

Jakarta, Indonesia 11480

ivan.edbert@binus.ac.id

Alvina Aulia

Computer Science Department

School of Computer Science

Bina Nusantara University

Jakarta, Indonesia 11480

aaulia@binus.edu

Abstract—Traffic sign recognition (TSR) is a critical
component of autonomous driving and Advanced Driver
Assistance Systems (ADAS) that demands a careful balance
between computational efficiency and classification accuracy.
this paper evaluates two convolutional neural network (CNN)
architectures: MobileNetV3-Large (lightweight CNN) and
ResNet50 (deep CNN) on the German Traffic Sign Recognition
Benchmark (GTSRB) dataset. Both models were trained
making use of a two-phase transfer learning technique that
involves fine-tuning followed the freezing of basic layers.
Accuracy, F1-score, inference time, and model complexity were
the metrics used to evaluate of performance. ResNet50 achieved
superior classification performance with 94.16% test accuracy
and a 94.29% weighted F1-score, compared to MobileNetV3's
92.19% accuracy and 92.02% F1-score. However, MobileNetV3
excelled in GPU inference speed, making it more appropriate for
real-time applications. These findings reveal a crucial trade-off
for ADAS implementation, ResNet50's depth provides higher
reliability, especially for challenging sign classes, making it ideal
for systems where maximum accuracy is paramount. In
contrast, MobileNetV3's efficiency is essential for deployment
on resource-constrained hardware. This analysis offers direct
guidance for developers in selecting an optimal architecture that
aligns with specific system constraints and safety requirements
in autonomous technology.

Keywords— Traffic Sign Recognition, MobileNetV3,
ResNet-50, Real-Time Detection, Computational Efficiency,
Sustainable Transportation

I. INTRODUCTION

Traffic sign recognition (TSR) is an important component

of Advanced Driver Assistance Systems (ADAS) and

autonomous vehicles. Traffic signs convey various pieces of

information such as road laws, traffic conditions, warning

signs for hazards, driving guidelines for vehicle safety, and

much more [1]. This information is essential for maintaining

driver safety and making traffic processes overall efficient.

As shown in figure 1, an estimated 1.19 million individuals

lost their lives from traffic-related occurrences in 2021

according to World Health Organization (WHO) reports as

shown in Figure 1 [2]. With traffic sign recognition, ADAS

and autonomous vehicles can substantially lower these

statistics.

Fig. 1. WHO estimated number of road traffic fatalities, 2000–2021

To identify traffic signs, most early approaches of traffic

sign recognition depended on machine learning and template

matching. Early on, researchers applied machine learning

techniques such as SVM (Support Vector Machines) and

Random Forest [3]. These early traditional methods needed

manual feature extraction, which was time-consuming, and

struggled to achieve fine-grained classification and

differentiate between traffic signs with similar characteristics.

Here, manual features include shape-based segmentation and

colour-based segmentation. Colour-based segmentation

applied technologies like RGB (Red Green Blue), HSI (Hue

Saturation Intensity), and HSV (Hue Saturation Value) to

obtain the traffic sign ROI (Region of Interest). Performance

for colour-based segmentation could decrease if it meets poor

lighting and different traffic signs with similar colours [4].

Shape-based segmentation, which is also used in detecting

traffic signs, uses techniques such as Hough Transform and

Harris Detector to detect frequently used sign shapes, such as

circles, triangles, and rectangles. However, this segmentation

has its limitations when the sign is partially occluded or

distorted [5]. Template matching was also commonly used for

traffic sign recognition; it involved comparing the sign to a

prepared template database. Like shape-based segmentation,

it has difficulty recognizing signs with distorted shapes [6].

Traffic sign recognition presents more difficulties other

than lighting, obstacles, and extreme weather. CNN is very

979-8-3315-6549-7/25/$31.00 ©2025 IEEE

2025 IEEE International Symposium on Consumer Technology (ISCT)

359

accurate, but it is difficult for real-world applications since it

requires significant computational capability. Lightweight

CNN improves efficiency to tackle this, but it still lags behind

in terms of speed compared to other models [7]. In this

research, the researcher will investigate traffic sign

recognition between lightweight CNN and deep CNN, both

similarities and differences. We will evaluate the

computational efficiency, processing speed, and recognition

accuracy, as well as the time needed. This research will help

us to determine which approach best fits real-life traffic sign

detection.

II. LITERATURE REVIEW

Due to the limitations machine learning faces, researchers

moved to a deep learning approach, which could

automatically learn the sign features. One of the popular deep

learning approaches is CNN. A model was developed that

combines both traditional and deep learning methods, making

use of Hough Transform and CNN. [1]. A small CNN model

was proposed that uses multichannel convolutional kernels

and reduces the number of parameters compared with

traditional CNN [6]. These models reach high accuracy, but

they struggle in real-time detection. A lightweight CNN is

later introduced to combat real-time applications. By

reducing the model size, it uses MicroNet for embedded

systems to achieve a balance in efficiency and accuracy and

applies multi-stage CNN-based classification to improve

extraction. This model achieved a result of 98.41% accuracy

on GTSRB, but this model uses augmented techniques to

expand the dataset's size, which does not fully replicate real-

world conditions [7].

Recent advancements have been made for lightweight

CNNs, DeepThin was then proposed, which was a CNN

optimized to run without a GPU. On the GTRSB dataset, this

model achieved a result of 99.40% on the grayscale model,

99.42% on the RGB model, and 99.73% on the ensemble

model. However, this model has its limitations; it confuses

similar classes, and lighting conditions impact the model’s

performance [8]. Zaibi et al. [9] and An et al. [10] develop a

lightweight CNN, leveraging the classic LeNet-5 framework.

Zaibi et al. enhance the model by reducing the parameters

while maintaining high accuracy. On the other hand, An et al.

modify the model by balancing efficiency and resource

requirements. Both of these models receive an accuracy of

99.84% and 97.53%, respectively, on the GTSRB dataset.

Khalifa et al. [11] proposed LE-CNN, a lightweight and

efficient CNN that incorporates depth-wise separable

convolutions and channel pruning. It achieves 96.5%

accuracy in ArTS (Arabic Traffic Sign). However, this model

ignores whole end-to-end latency, including capture,

preprocessing, and collision avoidance, which is essential for

real-world application. Xi et al. [12] introduced IECES-

network, an efficient CNN-based encoder with a Siamese

neural network, which enhances robustness to motion blur

and occlusions. It achieves a result of 86.1% accuracy with

motion blur and occlusions images.

With the increasing popularity of deep learning,

researchers investigated several deep CNN architectures to

make traffic sign recognition more accurate and robust,

particularly in challenging real-world situations. Triki et al.

[13] implemented a real-time system for traffic sign

recognition using an attention-based deep CNN in

combination with the Haar cascade detection. The model

achieves an accuracy of 99.91% using the GTSRB dataset.

However, the model has difficulty identifying rare or unseen

traffic signs and might fail to generalize to various real-world

settings. Benfaress et al. [14] proposed an explainable deep

CNN architecture using the technique of Grad-CAM. They

achieve an accuracy of 99.62% without data augmentation

and 99.06% with data augmentation in TT100K dataset. Even

with high accuracy, the model struggles with occlusions,

environmental variation, and deployment in low-resource

hardware.

Bi et al. [15] proposed a model by fine-tuning the VGG-

16 architecture, reducing the number of convolutional layers

and parameters, and using a global average pooling (GAP)

layer and a batch normalization (BN). The improved model

achieved 99.47% on GTSRB. On the other hand, Zhang et al.

[16] improved the LeNet-5 by using Gabor filters, BN layer

after each convolution, and replace the Sigmoid function with

the ReLU. Combined with SVM for classification, it reached

an accuracy of 96% on the expanded GTSRB dataset. At the

same time, Huo et al. [17] presented a Deep Mutual Learning

(DML) technique that used dual ResNet-20 networks that

used Kullback-Leibler alignment to learn from each other

simultaneously. When tested with GTSRB, the introduced

model achieved an accuracy of 99.612%.

Particularly in embedded systems like ADAS, recent

developments in CNN-based traffic sign recognition (TSR)

place a strong emphasis on striking a balance between

accuracy and real-time deployment. By introducing basic

CNN-based architectures for classification using softmax,

early works like those by Prasanna et al. [18] established

benchmarks for constrained traffic datasets and laid the

groundwork for future research.

Meng et al. [19] proposed SOS-CNN, a VGG-16-based

model that slices large images into overlapping patches, in

response to the need to detect smaller traffic signs. This model

greatly increases the detection rates of small objects. In the

meantime, a scale-aware CNN architecture tailored for traffic

sign recognition was introduced by Yang et al. [20] In order

to improve classification accuracy and robustness against

different sign sizes, their model combined global and local

contextual features to address scale variance in traffic signs.

Regarding architectural innovation, Xi et al. [21]

introduced a Siamese network that improves recognition

between visually similar sign classes by utilizing an effective

CNN encoder. When tested on intricate datasets like GTSRB,

this method proved to be successful. In a similar vein, Song

et al. [22] presented E-MobileViT, a low-latency

environment-specific lightweight vision transformer hybrid

optimized with MobileNetV2 backbones. The goal of both

models is to lower computational requirements without

sacrificing detection reliability.

360

Wei et al. [23] combined multi-scale feature fusion and

attention mechanisms in a CNN framework to further

optimize feature representation. This demonstrated its

potential for practical implementation by improving

performance in dimly lit and obscured environments. Zhang

et al. [24] achieved near-state-of-the-art results on lightweight

devices by compressing deep models without sacrificing

much accuracy through the use of techniques like

quantization-aware training and knowledge distillation.

III. METHODOLOGY

3.1. Dataset

In this study, the research will make use of the widely used

benchmark for traffic sign classification, the German Traffic

Sign Recognition Benchmark (GTSRB) dataset [25]. There

are over 50,000 images of different resolutions, lighting, and

backgrounds, distributed across about 40 classes. However

the dataset has its limitations, it only includes German sign

standards, doesn't include heavy rain, snow, or night

conditions, and doesn't include many heavily occluded signs.

These controlled settings are good for our research goal since

they make sure that the differences in performance we see

between architectures are due to real model capabilities and

not changes in the environment.

During the preprocessing stage, 80% of these photos were

used to train and 20% were used to test. The images were

resized from their original size to 224 by 224 pixels to fit the

model output. To increase generalization, the researcher

implements data augmentation techniques, including random

rotation, zoom, brightness adjustment and horizontal flip.

This guaranteed that the model acquired strong features in

addition to preventing overfitting probability.

3.2. MobileNet

For the lightweight CNN, the researcher employed

MobileNet, the MobileNetV3-Large, which is optimized for

mobile as well as embedded applications, making the CNN

appropriate for real-time applications [26]. Pretrained

weights from ImageNet were used by the researcher for

initializing the model, and then the researcher fine-tuned the

model with the help of the GTSRB dataset. The original head

of classification is replaced by a new dense layer of 43 output

neurons, according to the number of classes of traffic signs,

followed by a softmax function to produce probability

distribution over the classes. In training, the base layers of the

network were frozen so that the general features from

ImageNet are retained, only the new classification head is

trained. In the later stages, top layers of the base model are

unfrozen and fine-tuned with a lower learning rate for better

performance [27].

3.3. ResNet

Representing the deep CNN model, this study implements

a ResNet-50 architecture following the approach by Antony

et al. [28], who successfully applied ResNet for traffic sign

recognition. ResNet-50, a deep residual network with 50

layers, utilizes skip connections to mitigate vanishing

gradient problems, enabling more efficient and effective

learning in deeper networks.

The model was adapted by replacing the final

classification layer with a 43-unit dense layer followed by

softmax activation to match the number of traffic sign classes.

Input images were resized to 224×224 pixels and augmented

similarly to MobileNet. Training was conducted using the

Adam optimizer with a learning rate of 0.001 and a batch size

of 64 over 50 epochs. This configuration balances high

classification performance with computational feasibility,

making it suitable for evaluating deep CNN capabilities on

the GTSRB dataset.

TABLE I

Classification Head Architecture

Layers Parameters

Base Model Feature maps from backbone

GlobalAveragePooling2D No parameters

Dense (Hidden) 128 units, ReLU activation

Dropout
Rate = 0.3

Dense (Output)
43 units, Softmax activation

Fig. 2. Training Workflow using Transfer Learning

3.4. Training and Evaluation

All of the experiments were done on Kaggle's cloud

computing platform using a Tesla P100 GPU with 16GB of

VRAM and 13GB of RAM for training. For inference testing,

both Tesla P100 GPUs and Intel Xeon processors were used

to get a full picture of performance. The models in this study

361

were trained using the Adam optimizer with default

parameters, which is well-known for both its efficient

convergence and adaptive learning rate. It is set to have the

learning rate of 0.0001, so there are steady and stable updates

of pretrained weight without overfitting of previously learned

features. Sparse Categorical Cross-Entropy is also applied,

since it is best suited for multi-class classification problems.

The batch size is set to 64 to balance memory usage with

efficiency. To avoid overfitting and ensure generalization,

early stopping with a patience of 5 epoch was used to track

the validation loss over the course of training. This approach

stops the training once performance on the validation set no

longer improves, thus avoiding overfitting as well as

computational waste. Both models went through two training

phase, initial training with frozen base layer followed by fine-

tuning, both phases were set up to run for up to 40 epochs as

shown in Figure 2 and Table I.

For the model evaluation, the researcher employed

various performance measures, such as accuracy, precision,

recall, and F1-score, to give the overall view of the

classification performance. Besides accuracy-oriented

measures, the inference time per image was also calculated,

along with the total parameters of each model, to measure the

efficiency of the model as well as its capability to be applied

to real-time applications. Lastly, the models are evaluated to

determine which model performs better and if it can be

applied to real-time traffic sign recognition applications.

Based on past studies on related models, the researcher

expects MobileNet to be faster and more efficient. On the

other hand, ResNet's deep design and learning capacity

should help it to attain more accuracy. However, it needed

more computational power, which resulted in slower speed.

As a result, the researcher thinks that MobileNet is more

suitable in real-time applications, while ResNet would be

preferred if it allows high computational power in contrast to

speed.

IV. RESULT AND DISCUSSION

After training and testing with the GTSRB test set, the

performance of the models was analyzed based on key

metrics such as accuracy, F1-score, and time of inference.

Table II provides a thorough comparison of the performance

of the two models. This outcome provided an idea about the

effectiveness and usability of both MobileNetV3 and

ResNet50 models for traffic sign recognition. Comparison of

the models shows their strength, weakness, and use in real-

world systems.

Figure 3 and Figure 4 display the training progress for

both MobileNet and ResNet. Both training progress

experience a similar case where the validation accuracy

rapidly increases and stabilizes above 90%, while the training

accuracy increases gradually and always remains under the

validation accuracy. This large gap between train accuracy

and validation accuracy could be caused by the data

augmentation that is applied to the training set, such as zoom,

rotate, flip, and brightness adjustment, making it more

challenging to classify in the training set but perform better

in the validation set. Fine-tuning with a small learning rate

and freezing the base model in the earlier phase may also

limit the model's ability to adapt to the training data,

contributing to the slow rise of the training accuracy

Fig. 3. Training Accuracy and Validation Accuracy during MobileNet

Fine-Tuning Phase

Fig. 4. Training Accuracy and Validation Accuracy during ResNet Fine-

Tuning Phase

TABLE II

Comparison of MobileNet and ResNet Performance

Metrics MobileNet ResNet

Validation Accuracy 95.78% 99.29%

Test Accuracy 92.19% 94.16%

Weighted F1 Score 92.02% 94.29%

Inference Time

(with Kaggle’s GPU)

0.00048s 0.00227s

Inference Time

(with CPU)

0.14692s 0.08530s

362

Throughout the training process, MobileNetV3 achieves

a training accuracy of 96.34%, a test accuracy of 92.19%, and

a weighted F1 Score of 92.02%, indicating a strong

generalization across the 43 classes. The model also reached

an average inference time of 0.00048 seconds per image on

GPU and and 0.14692 seconds on CPU which is highly

efficient and a great fit for real-time applications. Based on

the classification report, shown in Table III, the researcher

found that the model achieves F1-scores above 99% on most

popular and visually recognizable classes, including class 14

(‘stop sign)’ and class 17 (‘no entry sign’). On the other hand,

the model faces difficulties in recognizing signs with similar

shapes and colours (arrows, blue circles, or diagonal lines).

For example, class 37 (‘go straight or left sign’) and class 39

(‘keep left sign’) achieved low scores with 7.75% and 23.53%

respectively. The differences in performance are mostly due

to the class imbalance in the GTSRB dataset. For example,

Stop Signs, which have over 2,000 training images, get

almost perfect F1-scores, while directional signs, which only

have about 200 samples, have trouble recognizing them

correctly because they don't have enough training data.

TABLE III

Top Three & Bottom Three Performing Classes with MobileNetV3

Class ID Sign Name F1-Score

14 Stop Sign 99.63%

17 No Entry Sign 99.30%

31 Wild animals crossing Sign 99.26%

36 Go straight or right Sign 50.63%

37 Go straight or left Sign 7.75%

39 Keep Left 23.53%

On the other hand, ResNet50 demonstrated superior

overall performance, achieving 98.87% training accuracy,

94.16% test accuracy, and a weighted F1 score of 94.29%.

This improvement was particularly noticeable in some of the

sign classes where MobileNetV3 previously performed

poorly. For example, the F1-score for Class 39 ('Keep left')

saw a dramatic improvement, increasing by over 42

percentage points from 23.53% to 65.92%. However, the

issue of class imbalance in the GTSRB dataset still had a

significant impact on other classes. The F1-score for Class 37

('Go straight or left') only improved by a modest 4 percentage

points to 11.76%, while performance on Class 36 ('Go

straight or right') slightly decreased. This indicates that while

ResNet50's deeper architecture can be highly effective, the

small amount of training data for certain underrepresented

classes remains a challenge. This confirms that a robust

model architecture is not entirely immune to the limitations

of the training data.

These improvements suggest that the deeper architecture

and residual connections in ResNet50 enable it to learn more

discriminative features, particularly helpful for complex or

visually similar traffic signs. The model showed improved

precision and recall in previously low-performing classes

such as class 37 and class 39, indicating better generalization.

However, this gain in accuracy came with increased

computational cost. ResNet50's inference time was 0.00227

seconds per image on GPU and 0.08530 seconds on CPU,

shockingly beating MobileNet’s inference time on CPU.

Though created as a light model, MobileNetV3 did not

surpass ResNet-50 when it comes to CPU-based inference.

However, both models proved to excel in different aspects.

While ResNet-50 performed more accurately and better

handled complex or similarly visible traffic scenes,

MobileNetV3 provided significantly improved inference

times when run on GPU and remained competitive in general

performance. These insights indicate that both models excel

in their own ways and the use should be based on the needs

of the application, whether maximum accuracy or increased

processing speeds for real-time applications.

Regarding how evaluation is done, it causes a number of

difficulties that make it difficult to implement in real-world

scenarios. The models were only tested in the Kaggle

computational environment, so it's hard to say how well

they'll operate in the real world on mobile devices, embedded

systems, or edge computing platforms that are often utilized

in automotive applications. Because of this computational

limit, we don't know how long it will actually take to make

inferences, how much memory it will use, or how much

power it will use in real-world situations. This could make

these methods less useful for self-driving cars or driver

assistance systems.

These deployment limits are made worse by dataset-

specific limits, the GTSRB dataset only has German traffic

signs that were taken in controlled conditions, which restrict

it to only German traffic management systems. Because the

researcher didn't deploy on mobile devices, edge computing,

or embedded systems, the models could not be tested in bad

weather scenarios because the dataset didn't include any of

those situations, such as heavy rain, snow, fog, or nighttime

lighting. This limited our evaluation to controlled test settings

alone. The dataset also has only a few examples of badly

obscured signs that are typical in cities, and there is a big class

imbalance, with some classes having more than 2,000 training

samples and others having fewer than 200 photos. However,

the comparison study gives us useful information about how

different types of architecture perform in controlled settings.

V. CONCLUSION

This study compared the performance of the lightweight

CNN (MobileNetV3-Large) with the deep CNN (ResNet-50)

for traffic sign classification using the GTSRB dataset. Both

models were trained with the two-stage training approach and

validated in terms of accuracy, F1-score, and the inference

time. ResNet-50 recorded slightly greater accuracy (94.16%)

and weighted F1-score (94.29%) in comparison with

MobileNetV3 (92.19% accuracy and 92.02% F1-score).

Surprisingly, MobileNet did not outperform ResNet-50 in

inference time completely. Although MobileNet achieved an

inference time of 0.14692 seconds on GPU, it performed

worse in CPU inference time, also reaching 0.14692 seconds,

363

while ResNet achieved an inference time of 0.08530 seconds

on CPU and 0.00227 seconds on GPU. These results point to

a nuanced accuracy vs computational efficiency trade-off.

While MobileNetV3 is still suitable for real-time use in GPU,

it performs poorly on general-purpose CPUs. ResNet-50

excels in terms of classification accuracy and offers constant

performance over several kinds of hardware as well.

In future studies, the researcher should look at the

constraints that have been found by testing models on real

mobile devices and embedded automotive systems to see if

they can be used in real-world scenarios, including looking at

how much memory and power they need. Furthermore, it

could be improved if the evaluation included more than just

German traffic signs and controlled environments, such as

international standards signs, and challenging environmental

conditions like poor weather, dark situations, and signs that

are difficult to see. More research into CPU optimization

methods, model compression methods, and hybrid

architectures that can change based on the specifications of

the target hardware, as well as advanced strategies for dealing

with class imbalance through synthetic data generation,

would help make traffic sign recognition systems more

reliable and could be used in a wider range of automotive

applications.

ACKNOWLEDGEMENT

The Credit author’s statement as follows, Yoel Augustan

and Clariant Benedictus Tan contributed equally to

conceptualization, data curation, investigation, formal

analysis and writing, review and editing of the paper. Ivan

Sebastian Edbert and Alvina Aulia equally contributed as

supervisors, validators and academic advisors, offering

direction and support during the research and the paper

creation.

REFERENCES

[1] Y. Sun, P. Ge, and Dequan Liu, Traffic Sign Detection and
Recognition Based on Convolutional Neural Network. IEEE, 2019.

[2] World Health Organization, “Global status report on road safety
2023.”

[3] J. Greenhalgh and M. Mirmehdi, “Traffic sign recognition using
MSER and Random Forests,” 2012. [Online]. Available:
https://www.researchgate.net/publication/261331878

[4] K. Horak, P. Cip, and D. Davidek, “Automatic Traffic Sign
Detection and Recognition Using Colour Segmentation and Shape
Identification,” in MATEC Web of Conferences, EDP Sciences,
Aug. 2016. doi: 10.1051/matecconf/20166817002.

[5] A. Hechri and A. Mtibaa, “Two-stage traffic sign detection and
recognition based on SVM and convolutional neural networks,”
IET Image Process, vol. 14, no. 5, pp. 939–946, Apr. 2020, doi:
10.1049/iet-ipr.2019.0634.

[6] W. Li, D. Li, and S. Zeng, “Traffic Sign Recognition with a small
convolutional neural network,” in IOP Conference Series:
Materials Science and Engineering, Institute of Physics
Publishing, Dec. 2019. doi: 10.1088/1757-899X/688/4/044034.

[7] M. A. Khan, H. Park, and J. Chae, “A Lightweight Convolutional
Neural Network (CNN) Architecture for Traffic Sign Recognition
in Urban Road Networks,” Electronics (Switzerland), vol. 12, no.
8, Apr. 2023, doi: 10.3390/electronics12081802.

[8] W. A. Haque, S. Arefin, A. S. M. Shihavuddin, and M. A. Hasan,
“DeepThin: A novel lightweight CNN architecture for traffic sign
recognition without GPU requirements,” Expert Syst Appl, vol.
168, Apr. 2021, doi: 10.1016/j.eswa.2020.114481.

[9] A. Zaibi, A. Ladgham, and A. Sakly, “A Lightweight Model for
Traffic Sign Classification Based on Enhanced LeNet-5 Network,”
J Sens, vol. 2021, 2021, doi: 10.1155/2021/8870529.

[10] Y. An, C. Yang, and S. Zhang, “A lightweight network architecture
for traffic sign recognition based on enhanced LeNet-5 network,”
Front Neurosci, vol. 18, 2024, doi: 10.3389/fnins.2024.1431033.

[11] A. A. Khalifa, W. M. Alayed, H. M. Elbadawy, and R. A. Sadek,
“Real-Time Navigation Roads: Lightweight and Efficient
Convolutional Neural Network (LE-CNN) for Arabic Traffic Sign
Recognition in Intelligent Transportation Systems (ITS),” Applied
Sciences (Switzerland), vol. 14, no. 9, May 2024, doi:
10.3390/app14093903.

[12] Z. Xi, Y. Shao, Y. Zheng, X. Liu, Y. Liu, and Y. Cai, “Road Traffic
Sign Recognition Method Using Siamese Network Combining
Efficient-CNN-Based Encoder,” IEEE Transactions on Intelligent
Transportation Systems, 2025, doi: 10.1109/TITS.2025.3530940.

[13] N. Triki, M. Karray, and M. Ksantini, “A Real-Time Traffic Sign
Recognition Method Using a New Attention-Based Deep
Convolutional Neural Network for Smart Vehicles,” Applied
Sciences (Switzerland), vol. 13, no. 8, Apr. 2023, doi:
10.3390/app13084793.

[14] I. Benfaress, A. Bouhoute, and A. Zinedine, “Advancing Traffic
Sign Recognition: Explainable Deep CNN for Enhanced
Robustness in Adverse Environments,” Computers, vol. 14, no. 3,
Mar. 2025, doi: 10.3390/computers14030088.

[15] Z. Bi, L. Yu, H. Gao, P. Zhou, and H. Yao, “Improved VGG
model-based efficient traffic sign recognition for safe driving in 5G
scenarios,” International Journal of Machine Learning and
Cybernetics, vol. 12, no. 11, pp. 3069–3080, Nov. 2021, doi:
10.1007/s13042-020-01185-5.

[16] C. Zhang, X. Yue, R. Wang, N. Li, and Y. Ding, “Study on Traffic
Sign Recognition by Optimized Lenet-5 Algorithm,” Intern J
Pattern Recognit Artif Intell, vol. 34, no. 1, Jan. 2020, doi:
10.1142/S0218001420550034.

[17] T. Huo, J. Fan, X. Li, H. Chen, B. Gao, and X. Li, “Traffic Sign
Recognition Based on ResNet-20 and Deep Mutual Learning,” in
Proceedings - 2020 Chinese Automation Congress, CAC 2020,
Institute of Electrical and Electronics Engineers Inc., Nov. 2020,
pp. 4770–4774. doi: 10.1109/CAC51589.2020.9327282.

[18] P. D. Prasanna and C. Dushyanth, “Traffic Sign Recognition Using
Convolutional Neural Network,” 2024. [Online]. Available:
www.ijcrt.org

[19] Z. Meng, X. Fan, X. Chen, M. Chen, and Y. Tong, “Detecting
Small Signs from Large Images.”

[20] Y. Yang, S. Liu, W. Ma, Q. Wang, and Z. Liu, “Efficient Traffic-
Sign Recognition with Scale-aware CNN.”

[21] Z. Xi, Y. Shao, Y. Zheng, X. Liu, Y. Liu, and Y. Cai, “Road Traffic
Sign Recognition Method Using Siamese Network Combining
Efficient-CNN-Based Encoder,” IEEE Transactions on Intelligent
Transportation Systems, 2025, doi: 10.1109/TITS.2025.3530940.

[22] S. Song, X. Ye, and S. Manoharan, “E-MobileViT: a lightweight
model for traffic sign recognition,” Industrial Artificial
Intelligence, vol. 3, no. 1, p. 3, Mar. 2025, doi: 10.1007/s44244-
025-00024-2.

[23] W. Wei et al., “A lightweight network for traffic sign recognition
based on multi-scale feature and attention mechanism,” Heliyon,
vol. 10, no. 4, Feb. 2024, doi: 10.1016/j.heliyon.2024.e26182.

[24] G. Zhang, Z. Li, D. Huang, W. Luo, Z. Lu, and Y. Hu, “A Traffic
Sign Recognition System Based on Lightweight Network
Learning,” Journal of Intelligent and Robotic Systems: Theory and
Applications, vol. 110, no. 4, Dec. 2024, doi: 10.1007/s10846-024-
02173-5.

[25] S. Johannes, Marc Schlipsing, Jan Salmen, and Chirstian Igel, The
German Traffic Sign Recognition Benchmark: A multi-class
classification competition. IEEE, 2011.

[26] A. Howard et al., “Searching for MobileNetV3,” May 2019,
[Online]. Available: http://arxiv.org/abs/1905.02244

[27] N. Gupta, “A Pre-Trained Vs Fine-Tuning Methodology in
Transfer Learning,” in Journal of Physics: Conference Series, IOP
Publishing Ltd, Aug. 2021. doi: 10.1088/1742-
6596/1947/1/012028.

[28] J. C. Antony, G. M. Karpura Dheepan, K. Veena, V. Vikas, and V.
Satyamitra, “Traffic sign recognition using CNN and Res-Net,”
EAI Endorsed Transactions on Internet of Things, vol. 10, pp. 1–
7, Nov. 2024, doi: 10.4108/eetiot.5098.

364

