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Abstract—Traffic sign recognition (TSR) is a critical 
component of autonomous driving and Advanced Driver 
Assistance Systems (ADAS) that demands a careful balance 
between computational efficiency and classification accuracy. 
this paper evaluates two convolutional neural network (CNN) 
architectures: MobileNetV3-Large (lightweight CNN) and 
ResNet50 (deep CNN) on the German Traffic Sign Recognition 
Benchmark (GTSRB) dataset. Both models were trained 
making use of a two-phase transfer learning technique that 
involves fine-tuning followed the freezing of basic layers. 
Accuracy, F1-score, inference time, and model complexity were 
the metrics used to evaluate of performance. ResNet50 achieved 
superior classification performance with 94.16% test accuracy 
and a 94.29% weighted F1-score, compared to MobileNetV3's 
92.19% accuracy and 92.02% F1-score. However, MobileNetV3 
excelled in GPU inference speed, making it more appropriate for 
real-time applications. These findings reveal a crucial trade-off 
for ADAS implementation, ResNet50's depth provides higher 
reliability, especially for challenging sign classes, making it ideal 
for systems where maximum accuracy is paramount. In 
contrast, MobileNetV3's efficiency is essential for deployment 
on resource-constrained hardware. This analysis offers direct 
guidance for developers in selecting an optimal architecture that 
aligns with specific system constraints and safety requirements 
in autonomous technology. 

 

Keywords— Traffic Sign Recognition, MobileNetV3, 
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I. INTRODUCTION  

Traffic sign recognition (TSR) is an important component 

of Advanced Driver Assistance Systems (ADAS) and 

autonomous vehicles. Traffic signs convey various pieces of 

information such as road laws, traffic conditions, warning 

signs for hazards, driving guidelines for vehicle safety, and 

much more [1]. This information is essential for maintaining 

driver safety and making traffic processes overall efficient. 

As shown in figure 1, an estimated 1.19 million individuals 

lost their lives from traffic-related occurrences in 2021 

according to World Health Organization (WHO) reports as 

shown in Figure 1 [2]. With traffic sign recognition, ADAS 

and autonomous vehicles can substantially lower these 

statistics. 

 

Fig. 1. WHO estimated number of road traffic fatalities, 2000–2021 

To identify traffic signs, most early approaches of traffic 

sign recognition depended on machine learning and template 

matching. Early on, researchers applied machine learning 

techniques such as SVM (Support Vector Machines) and 

Random Forest [3]. These early traditional methods needed 

manual feature extraction, which was time-consuming, and 

struggled to achieve fine-grained classification and 

differentiate between traffic signs with similar characteristics. 

Here, manual features include shape-based segmentation and 

colour-based segmentation. Colour-based segmentation 

applied technologies like RGB (Red Green Blue), HSI (Hue 

Saturation Intensity), and HSV (Hue Saturation Value) to 

obtain the traffic sign ROI (Region of Interest). Performance 

for colour-based segmentation could decrease if it meets poor 

lighting and different traffic signs with similar colours [4]. 

Shape-based segmentation, which is also used in detecting 

traffic signs, uses techniques such as Hough Transform and 

Harris Detector to detect frequently used sign shapes, such as 

circles, triangles, and rectangles. However, this segmentation 

has its limitations when the sign is partially occluded or 

distorted [5]. Template matching was also commonly used for 

traffic sign recognition; it involved comparing the sign to a 

prepared template database. Like shape-based segmentation, 

it has difficulty recognizing signs with distorted shapes [6]. 

 

Traffic sign recognition presents more difficulties other 

than lighting, obstacles, and extreme weather. CNN is very 
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accurate, but it is difficult for real-world applications since it 

requires significant computational capability. Lightweight 

CNN improves efficiency to tackle this, but it still lags behind 

in terms of speed compared to other models [7]. In this 

research, the researcher will investigate traffic sign 

recognition between lightweight CNN and deep CNN, both 

similarities and differences. We will evaluate the 

computational efficiency, processing speed, and recognition 

accuracy, as well as the time needed. This research will help 

us to determine which approach best fits real-life traffic sign 

detection. 

II. LITERATURE REVIEW 

Due to the limitations machine learning faces, researchers 

moved to a deep learning approach, which could 

automatically learn the sign features. One of the popular deep 

learning approaches is CNN. A model was developed that 

combines both traditional and deep learning methods, making 

use of Hough Transform and CNN. [1]. A small CNN model 

was proposed that uses multichannel convolutional kernels 

and reduces the number of parameters compared with 

traditional CNN [6]. These models reach high accuracy, but 

they struggle in real-time detection. A lightweight CNN is 

later introduced to combat real-time applications. By 

reducing the model size, it uses MicroNet for embedded 

systems to achieve a balance in efficiency and accuracy and 

applies multi-stage CNN-based classification to improve 

extraction. This model achieved a result of 98.41% accuracy 

on GTSRB, but this model uses augmented techniques to 

expand the dataset's size, which does not fully replicate real-

world conditions [7].  

Recent advancements have been made for lightweight 

CNNs, DeepThin was then proposed, which was a CNN 

optimized to run without a GPU. On the GTRSB dataset, this 

model achieved a result of 99.40% on the grayscale model, 

99.42% on the RGB model, and 99.73% on the ensemble 

model. However, this model has its limitations; it confuses 

similar classes, and lighting conditions impact the model’s 

performance [8]. Zaibi et al. [9] and An et al. [10] develop a 

lightweight CNN, leveraging the classic LeNet-5 framework. 

Zaibi et al. enhance the model by reducing the parameters 

while maintaining high accuracy. On the other hand, An et al. 

modify the model by balancing efficiency and resource 

requirements. Both of these models receive an accuracy of 

99.84% and 97.53%, respectively, on the GTSRB dataset.  

Khalifa et al. [11] proposed LE-CNN, a lightweight and 

efficient CNN that incorporates depth-wise separable 

convolutions and channel pruning. It achieves 96.5% 

accuracy in ArTS (Arabic Traffic Sign). However, this model 

ignores whole end-to-end latency, including capture, 

preprocessing, and collision avoidance, which is essential for 

real-world application. Xi et al. [12] introduced IECES-

network, an efficient CNN-based encoder with a Siamese 

neural network, which enhances robustness to motion blur 

and occlusions. It achieves a result of 86.1% accuracy with 

motion blur and occlusions images. 

 

With the increasing popularity of deep learning, 

researchers investigated several deep CNN architectures to 

make traffic sign recognition more accurate and robust, 

particularly in challenging real-world situations. Triki et al. 

[13] implemented a real-time system for traffic sign 

recognition using an attention-based deep CNN in 

combination with the Haar cascade detection. The model 

achieves an accuracy of 99.91% using the GTSRB dataset. 

However, the model has difficulty identifying rare or unseen 

traffic signs and might fail to generalize to various real-world 

settings. Benfaress et al. [14] proposed an explainable deep 

CNN architecture using the technique of Grad-CAM. They 

achieve an accuracy of 99.62% without data augmentation 

and 99.06% with data augmentation in TT100K dataset. Even 

with high accuracy, the model struggles with occlusions, 

environmental variation, and deployment in low-resource 

hardware. 

 

Bi et al. [15] proposed a model by fine-tuning the VGG-

16 architecture, reducing the number of convolutional layers 

and parameters, and using a global average pooling (GAP) 

layer and a batch normalization (BN). The improved model 

achieved 99.47% on GTSRB. On the other hand, Zhang et al. 

[16] improved the LeNet-5 by using Gabor filters, BN layer 

after each convolution, and replace the Sigmoid function with 

the ReLU. Combined with SVM for classification, it reached 

an accuracy of 96% on the expanded GTSRB dataset. At the 

same time, Huo et al. [17] presented a Deep Mutual Learning 

(DML) technique that used dual ResNet-20 networks that 

used Kullback-Leibler alignment to learn from each other 

simultaneously. When tested with GTSRB, the introduced 

model achieved an accuracy of 99.612%. 

 

Particularly in embedded systems like ADAS, recent 

developments in CNN-based traffic sign recognition (TSR) 

place a strong emphasis on striking a balance between 

accuracy and real-time deployment. By introducing basic 

CNN-based architectures for classification using softmax, 

early works like those by Prasanna et al. [18] established 

benchmarks for constrained traffic datasets and laid the 

groundwork for future research. 

Meng et al. [19] proposed SOS-CNN, a VGG-16-based 

model that slices large images into overlapping patches, in 

response to the need to detect smaller traffic signs. This model 

greatly increases the detection rates of small objects. In the 

meantime, a scale-aware CNN architecture tailored for traffic 

sign recognition was introduced by Yang et al. [20] In order 

to improve classification accuracy and robustness against 

different sign sizes, their model combined global and local 

contextual features to address scale variance in traffic signs. 

Regarding architectural innovation, Xi et al. [21] 

introduced a Siamese network that improves recognition 

between visually similar sign classes by utilizing an effective 

CNN encoder. When tested on intricate datasets like GTSRB, 

this method proved to be successful. In a similar vein, Song 

et al. [22] presented E-MobileViT, a low-latency 

environment-specific lightweight vision transformer hybrid 

optimized with MobileNetV2 backbones. The goal of both 

models is to lower computational requirements without 

sacrificing detection reliability. 
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Wei et al. [23] combined multi-scale feature fusion and 

attention mechanisms in a CNN framework to further 

optimize feature representation. This demonstrated its 

potential for practical implementation by improving 

performance in dimly lit and obscured environments. Zhang 

et al. [24] achieved near-state-of-the-art results on lightweight 

devices by compressing deep models without sacrificing 

much accuracy through the use of techniques like 

quantization-aware training and knowledge distillation. 

III. METHODOLOGY 

3.1. Dataset 

In this study, the research will make use of the widely used 

benchmark for traffic sign classification, the German Traffic 

Sign Recognition Benchmark (GTSRB) dataset [25]. There 

are over 50,000 images of different resolutions, lighting, and 

backgrounds, distributed across about 40 classes. However 

the dataset has its limitations, it only includes German sign 

standards, doesn't include heavy rain, snow, or night 

conditions, and doesn't include many heavily occluded signs. 

These controlled settings are good for our research goal since 

they make sure that the differences in performance we see 

between architectures are due to real model capabilities and 

not changes in the environment. 

During the preprocessing stage, 80% of these photos were 

used to train and 20% were used to test. The images were 

resized from their original size to 224 by 224 pixels to fit the 

model output. To increase generalization, the researcher 

implements data augmentation techniques, including random 

rotation, zoom, brightness adjustment and horizontal flip. 

This guaranteed that the model acquired strong features in 

addition to preventing overfitting probability. 

3.2. MobileNet 

For the lightweight CNN, the researcher employed 

MobileNet, the MobileNetV3-Large, which is optimized for 

mobile as well as embedded applications, making the CNN 

appropriate for real-time applications [26]. Pretrained 

weights from ImageNet were used by the researcher for 

initializing the model, and then the researcher fine-tuned the 

model with the help of the GTSRB dataset. The original head 

of classification is replaced by a new dense layer of 43 output 

neurons, according to the number of classes of traffic signs, 

followed by a softmax function to produce probability 

distribution over the classes. In training, the base layers of the 

network were frozen so that the general features from 

ImageNet are retained, only the new classification head is 

trained. In the later stages, top layers of the base model are 

unfrozen and fine-tuned with a lower learning rate for better 

performance [27]. 

3.3. ResNet 

Representing the deep CNN model, this study implements 

a ResNet-50 architecture following the approach by Antony 

et al. [28], who successfully applied ResNet for traffic sign 

recognition. ResNet-50, a deep residual network with 50 

layers, utilizes skip connections to mitigate vanishing 

gradient problems, enabling more efficient and effective 

learning in deeper networks. 

The model was adapted by replacing the final 

classification layer with a 43-unit dense layer followed by 

softmax activation to match the number of traffic sign classes. 

Input images were resized to 224×224 pixels and augmented 

similarly to MobileNet. Training was conducted using the 

Adam optimizer with a learning rate of 0.001 and a batch size 

of 64 over 50 epochs. This configuration balances high 

classification performance with computational feasibility, 

making it suitable for evaluating deep CNN capabilities on 

the GTSRB dataset.  

TABLE I 

Classification Head Architecture 

Layers Parameters 

Base Model Feature maps from backbone 

GlobalAveragePooling2D No parameters 

Dense (Hidden) 128 units, ReLU activation 

Dropout 
Rate = 0.3 

Dense (Output) 
43 units, Softmax activation 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Training Workflow using Transfer Learning 

3.4. Training and Evaluation  

All of the experiments were done on Kaggle's cloud 

computing platform using a Tesla P100 GPU with 16GB of 

VRAM and 13GB of RAM for training. For inference testing, 

both Tesla P100 GPUs and Intel Xeon processors were used 

to get a full picture of performance. The models in this study 
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were trained using the Adam optimizer with default 

parameters, which is well-known for both its efficient 

convergence and adaptive learning rate. It is set to have the 

learning rate of 0.0001, so there are steady and stable updates 

of pretrained weight without overfitting of previously learned 

features. Sparse Categorical Cross-Entropy is also applied, 

since it is best suited for multi-class classification problems. 

The batch size is set to 64 to balance memory usage with 

efficiency. To avoid overfitting and ensure generalization, 

early stopping with a patience of 5 epoch was used to track 

the validation loss over the course of training. This approach 

stops the training once performance on the validation set no 

longer improves, thus avoiding overfitting as well as 

computational waste. Both models went through two training 

phase, initial training with frozen base layer followed by fine-

tuning, both phases were set up to run for up to 40 epochs as 

shown in Figure 2 and Table I. 

For the model evaluation, the researcher employed 

various performance measures, such as accuracy, precision, 

recall, and F1-score, to give the overall view of the 

classification performance. Besides accuracy-oriented 

measures, the inference time per image was also calculated, 

along with the total parameters of each model, to measure the 

efficiency of the model as well as its capability to be applied 

to real-time applications. Lastly, the models are evaluated to 

determine which model performs better and if it can be 

applied to real-time traffic sign recognition applications. 

Based on past studies on related models, the researcher 

expects MobileNet to be faster and more efficient. On the 

other hand, ResNet's deep design and learning capacity 

should help it to attain more accuracy. However, it needed 

more computational power, which resulted in slower speed. 

As a result, the researcher thinks that MobileNet is more 

suitable in real-time applications, while ResNet would be 

preferred if it allows high computational power in contrast to 

speed. 

IV. RESULT AND DISCUSSION 

After training and testing with the GTSRB test set, the 

performance of the models was analyzed based on key 

metrics such as accuracy, F1-score, and time of inference. 

Table II provides a thorough comparison of the performance 

of the two models. This outcome provided an idea about the 

effectiveness and usability of both MobileNetV3 and 

ResNet50 models for traffic sign recognition. Comparison of 

the models shows their strength, weakness, and use in real-

world systems.  

Figure 3 and Figure 4 display the training progress for 

both MobileNet and ResNet. Both training progress 

experience a similar case where the validation accuracy 

rapidly increases and stabilizes above 90%, while the training 

accuracy increases gradually and always remains under the 

validation accuracy. This large gap between train accuracy 

and validation accuracy could be caused by the data 

augmentation that is applied to the training set, such as zoom, 

rotate, flip, and brightness adjustment, making it more 

challenging to classify in the training set but perform better 

in the validation set. Fine-tuning with a small learning rate 

and freezing the base model in the earlier phase may also 

limit the model's ability to adapt to the training data, 

contributing to the slow rise of the training accuracy 

 

 

Fig. 3. Training Accuracy and Validation Accuracy during MobileNet 

Fine-Tuning Phase 

 

Fig. 4. Training Accuracy and Validation Accuracy during ResNet Fine-

Tuning Phase 

TABLE II 

Comparison of MobileNet and ResNet Performance 

Metrics MobileNet ResNet 

Validation Accuracy 95.78% 99.29% 

Test Accuracy 92.19% 94.16% 

Weighted F1 Score 92.02% 94.29% 

Inference Time 

(with Kaggle’s GPU) 

0.00048s 0.00227s 

Inference Time 

(with CPU) 

0.14692s 0.08530s 
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Throughout the training process, MobileNetV3 achieves 

a training accuracy of 96.34%, a test accuracy of 92.19%, and 

a weighted F1 Score of 92.02%, indicating a strong 

generalization across the 43 classes. The model also reached 

an average inference time of 0.00048 seconds per image on 

GPU and and 0.14692 seconds on CPU which is highly 

efficient and a great fit for real-time applications. Based on 

the classification report, shown in Table III, the researcher 

found that the model achieves F1-scores above 99% on most 

popular and visually recognizable classes, including class 14 

(‘stop sign)’ and class 17 (‘no entry sign’). On the other hand, 

the model faces difficulties in recognizing signs with similar 

shapes and colours (arrows, blue circles, or diagonal lines). 

For example, class 37 (‘go straight or left sign’) and class 39 

(‘keep left sign’) achieved low scores with 7.75% and 23.53% 

respectively. The differences in performance are mostly due 

to the class imbalance in the GTSRB dataset. For example, 

Stop Signs, which have over 2,000 training images, get 

almost perfect F1-scores, while directional signs, which only 

have about 200 samples, have trouble recognizing them 

correctly because they don't have enough training data. 

TABLE III 

Top Three & Bottom Three Performing Classes with MobileNetV3 

Class ID Sign Name F1-Score 

14 Stop Sign 99.63% 

17 No Entry Sign 99.30% 

31 Wild animals crossing Sign 99.26% 

36 Go straight or right Sign 50.63% 

37 Go straight or left Sign 7.75% 

39 Keep Left 23.53% 

 

On the other hand, ResNet50 demonstrated superior 

overall performance, achieving 98.87% training accuracy, 

94.16% test accuracy, and a weighted F1 score of 94.29%. 

This improvement was particularly noticeable in some of the 

sign classes where MobileNetV3 previously performed 

poorly. For example, the F1-score for Class 39 ('Keep left') 

saw a dramatic improvement, increasing by over 42 

percentage points from 23.53% to 65.92%. However, the 

issue of class imbalance in the GTSRB dataset still had a 

significant impact on other classes. The F1-score for Class 37 

('Go straight or left') only improved by a modest 4 percentage 

points to 11.76%, while performance on Class 36 ('Go 

straight or right') slightly decreased. This indicates that while 

ResNet50's deeper architecture can be highly effective, the 

small amount of training data for certain underrepresented 

classes remains a challenge. This confirms that a robust 

model architecture is not entirely immune to the limitations 

of the training data. 

These improvements suggest that the deeper architecture 

and residual connections in ResNet50 enable it to learn more 

discriminative features, particularly helpful for complex or 

visually similar traffic signs. The model showed improved 

precision and recall in previously low-performing classes 

such as class 37 and class 39, indicating better generalization. 

However, this gain in accuracy came with increased 

computational cost. ResNet50's inference time was 0.00227 

seconds per image on GPU and 0.08530 seconds on CPU, 

shockingly beating MobileNet’s inference time on CPU.  

Though created as a light model, MobileNetV3 did not 

surpass ResNet-50 when it comes to CPU-based inference. 

However, both models proved to excel in different aspects. 

While ResNet-50 performed more accurately and better 

handled complex or similarly visible traffic scenes, 

MobileNetV3 provided significantly improved inference 

times when run on GPU and remained competitive in general 

performance. These insights indicate that both models excel 

in their own ways and the use should be based on the needs 

of the application, whether maximum accuracy or increased 

processing speeds for real-time applications. 

Regarding how evaluation is done, it causes a number of 

difficulties that make it difficult to implement in real-world 

scenarios. The models were only tested in the Kaggle 

computational environment, so it's hard to say how well 

they'll operate in the real world on mobile devices, embedded 

systems, or edge computing platforms that are often utilized 

in automotive applications. Because of this computational 

limit, we don't know how long it will actually take to make 

inferences, how much memory it will use, or how much 

power it will use in real-world situations. This could make 

these methods less useful for self-driving cars or driver 

assistance systems. 

These deployment limits are made worse by dataset-

specific limits, the GTSRB dataset only has German traffic 

signs that were taken in controlled conditions, which restrict 

it to only German traffic management systems. Because the 

researcher didn't deploy on mobile devices, edge computing, 

or embedded systems, the models could not be tested in bad 

weather scenarios because the dataset didn't include any of 

those situations, such as heavy rain, snow, fog, or nighttime 

lighting. This limited our evaluation to controlled test settings 

alone. The dataset also has only a few examples of badly 

obscured signs that are typical in cities, and there is a big class 

imbalance, with some classes having more than 2,000 training 

samples and others having fewer than 200 photos. However, 

the comparison study gives us useful information about how 

different types of architecture perform in controlled settings. 

V. CONCLUSION 

This study compared the performance of the lightweight 

CNN (MobileNetV3-Large) with the deep CNN (ResNet-50) 

for traffic sign classification using the GTSRB dataset. Both 

models were trained with the two-stage training approach and 

validated in terms of accuracy, F1-score, and the inference 

time. ResNet-50 recorded slightly greater accuracy (94.16%) 

and weighted F1-score (94.29%) in comparison with 

MobileNetV3 (92.19% accuracy and 92.02% F1-score). 

Surprisingly, MobileNet did not outperform ResNet-50 in 

inference time completely. Although MobileNet achieved an 

inference time of 0.14692 seconds on GPU, it performed 

worse in CPU inference time, also reaching 0.14692 seconds, 
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while ResNet achieved an inference time of 0.08530 seconds 

on CPU and 0.00227 seconds on GPU. These results point to 

a nuanced accuracy vs computational efficiency trade-off. 

While MobileNetV3 is still suitable for real-time use in GPU, 

it performs poorly on general-purpose CPUs. ResNet-50 

excels in terms of classification accuracy and offers constant 

performance over several kinds of hardware as well. 

In future studies, the researcher should look at the 

constraints that have been found by testing models on real 

mobile devices and embedded automotive systems to see if 

they can be used in real-world scenarios, including looking at 

how much memory and power they need. Furthermore, it 

could be improved if the evaluation included more than just 

German traffic signs and controlled environments, such as 

international standards signs, and challenging environmental 

conditions like poor weather, dark situations, and signs that 

are difficult to see. More research into CPU optimization 

methods, model compression methods, and hybrid 

architectures that can change based on the specifications of 

the target hardware, as well as advanced strategies for dealing 

with class imbalance through synthetic data generation, 

would help make traffic sign recognition systems more 

reliable and could be used in a wider range of automotive 

applications. 
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